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An Assignment and Recordation Form Cover Sheet.
A certified copy of a priority application.

A Power of Attorney.

A Statement Claiming Small Entity Status.
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INTERPRETATION PHASE FOR
ADAPTIVE AGENT ORIENTED SOFTWARE ARCHITECTURE

Inventor: Babak Hodjat

CLAIM OF PRIORITY
This application claims the benefit of U.S. Provisional Application No.
60/163,859, filed November 5, 1999 (Attorney Docket No. DEJI-01001US0O

WSW), which is incorporated herein by reference.

BACKGROUND
1. Field of the Invention

The inventionrelates to software methods and techniques for implementing
an agent-oriented architecture, and more particularly to techniques for improving

the interpretation phase in such an architecture.

2. References

The following documents are all incorporated by reference herein.

T. Kuhme, Adaptive Action Prompting - A complementary aid to support
task-oriented interaction in explorative user interfaces. Report #GIT-GVU-93-19,
Georgia Institute of Technology, Dept. of Computer Science, Graphics,
Visualization, and Usability Center, 1993.

L. Balint, Adaptive Dynamic Menu System. Poster Abstracts HCI
International '89, Boston, September 18- 22, 1989.

A. Cypher. Eager: Programming Repetitive Tasks By Example. Proc. CHI
'91, pp. 33-39, 1991.

R. Beale, A. Wood, Agent-based interaction, Proceedings of HCI'94
Glasgow, 1995, pp. 239-245.

A. Wood, "Desktop Agents", School of Computer Science, University of
Birmingham, B.Sc. Dissertation, 1991.
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Clarke, Smyth, "A Cooperative Computer Based on the Principles of
Human Cooperation”, International Journal of Man-Machine Studies 38, pp.3-22,
1993.

N. Eisenger, N. Elshiewy, MADMAN - Multi-Agent Diary Manager,

5 ESRC-92-7i (Economic & Social Resource Council) Internal Report, 1992.

T. Oren, G. Salomon, K. Kreitman, A. Don, "Guides: Characterizing the
Interface”, in The Art of Human-Computer Interface Design, Brenda Laurel (ed.),
1990 (pp.367-381).

F. Menczer, R. K. Belew, Adaptive Information Agents in Distributed

10 Textual Environments, Proceedings of the Second International Conference on

Autonomous Agents (Agents '98), Minneapolis, MN, May 1998.

P. Brazdil, M. Gams, S. Sian, L.Torgo, W. van de Velde, Learning in
Distributed Systems and Multi-Agent Environments, Machine Learning: EWSL-91

Z (European Working Session on Learning), Y. Kodratoff (Ed.), Lecture Notes in

fiE 15 Artificial Intelligence, Springer-Verlag, 1991. http://  www.ncc.up.pt/
~ltorgo/Papers/ LDSME/LDSME-Contents.htm] (visited 1998).
B. Hodjat, M. Amamiya, The Self-organizing symbiotic agent,
http://www_al.is.kyushu-u.ac.jp/ ~bobby/1stpaper.htm, 1998.
e P. R. Cohen, A. Cheyer, M. Wang, S. C. Baeg, OAA: An Open Agent
20 Architecture, AAAI Spring Symposium, 1994,

http://www.ai.sri.com/~cheyer/papers/aaai/adam-agent.html (visited 1998).

S. Franklin, A. Graesser, Is it an Agent or just a Program? A Taxonomy for
Autonomous Agents, in: Proceedings of the Third International Workshop on
Agents Theories, Architectures, and Languages, Springer-Verlag,1996,

25 http://www.msci.memphis.edu/~Franklin/AgentProg. html (visited 1998).

B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, M. Balabanovic, A
domain-specific Software Architecture for adaptive intelligent systems, IEEE
Transactions on Software Engineering, April 1995, pp. 288-301.

Y. Shoham, Agent-oriented Programming, Artificial Intelli gence, Vol. 60,

30 No. 1, pages 51-92, 1993.

Attorney Docket No.: DEJI-01001US1 WSW
/wsw/deji/1001.app.wpd -2-



10

15

20

25

30

M. R. Genesereth, S. P. Ketchpel, Software Agents, Communications of
the ACM, Vol. 37, No. 7, July 1994, pp. 48-53, 147.

A. Cheyer, L. Julia, Multimodal Maps: An Agent-based Approach,
http://www.ai.sri.com/~cheyer/ papers/mmap/mmap.html, 1996.

T. Khedro, M. Genesereth, The federation architecture for interoperable
agent-based concurrent engineering systems. In International Journal on
Concurrent Engineering, Research and Applications, Vol. 2, pages 125-131,1994.

P. Brazdil and S. Muggleton: "Learning to Relate Terms in Multiple Agent
Environment", Proceedings of Machine Learning - EWSL-91, pp. 424-439,
Springer-Verlag, 1991.

S. Cranefield, M. Purvis, An agent-based architecture for software tool
coordination, in Proceedings of the Workshop on Theoretical and Practical
Foundations of Intelligent Agents, Springer, 1996.

T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay,
J. McGuire, S. Shapiro, C. Beck, Specification of the KQML
Agent-Communication Language, 1993 (hereinafter “KQML 1993™),
http://www.cs.umbc.edu/ kqml/kgmlspec/spec.html (visited 1998).

Yannis Labrou and Tim Finin, A Proposal for anew KQML Specification,
TR CS-97-03, February 1997, Computer Science and Electrical Engineering
Department, University of Maryland Baltimore County, http://www.cs.
umbc.edu/~jklabrou/publications/tr9703.pdf.

R.R. Korfhage, Information Storage and Retrieval, John Wiley & Sons,
June 1997.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

D.C. Smith, A. Cypher, J. Spohrer, KidSim: Programming Agents without
a programming language, Communications of the ACM, Vol. 37, No. 7, pages
55-67, 1994.

M. Amamiya, et al., Coordinated Morphological and Syntactic Analysis
of Japanese Language, Int. Joint Conf. On Artificial Intelligence 90, pp. 1012-
1017, 1990.
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M. Amamiya, T. Mine, An O(n) time and O(#®) processors parallel parsing
algorithm for context-free grammars, in H. Jaakkola et al. eds., Advances in
Information Modelling and Knowledge Bases, pp. 351-367, IOS Press, 1991.

N. A. Baas. Emergence, Hierarchies, and Hyper-structures. C.G. Langton
ed., Artificial Life IIl. Addison Wesley, 1994.

N. A. Baas. Hyper-structures as Tools in Nanotechnology and
Nanobiology. S. Rasmussen, S. R. Hameroff, J. Tuzinki, P. A. Hansson ed. ’s,
Towards a Nanobiology: Coherent and Emergent Phenomena in Bimolecular
Systems. MIT Press, 1995.

J. M. Bradshaw. KaoS: An Open Agent Architecture Supporting Reuse,
Interoperability, and Extensibility. Proceedings of Tenth Knowledge Acquisition
for Knowledge-Based Systems Workshop. http://ksi.cpsc.
ucalgary.ca/KAW/KAW9I6/KAW96Proc.html, 1996.

D. Bruschi, G. Pighizzini, A Parallel Version of Earley’s Algorithm, Tech
Rep. 114-94, Dipartimento di Scienze dell’Informazione, Univ. of Milan, 1994.

D. Cockburn and N. R. Jennings. ARCHON: A Distributed Artificial
Intelligence System for Industrial Applications. G. M. P. O’Hare, N. R. Jennings,
ed.’s, Foundations of Distributed Artificial Intelligence. pp. 319-344. John Wiley
& Sons, 1996.

JI. E. Hopcroft, J. D. Ullman, Formal Languages and Their Relation to
Automata, Addison-Wesley, 1969.

V. R. Lesser. Reflections on the Nature of Multi-Agent Coordination and
its implications for an Agent Architecture, Autonomous A gents and Multi-Agent
Systems. pp. 89-111, Kluwer Academic Publishers, 1, 1998.

A. G, Manousopoulou, G. Papakonstantinou, P. Tsanakas, A chart-like
parser for context sensitive grammars, Proceedings of the I* workshop on
tabulation in parsing and deduction (TAPD ’98), pp. 89 —95, Paris, France, 1998.

D. Martin and D. Moran. Building distributed software systems with the

open agent architecture. Proc. of the Third International Conference on the
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Practical Application of Intelligent Agents and Multi-Agent Technology. The
Practical Application Company Ltd., Blackpool, Lancashire, UK, March 1998.

3. Description of Related Art

Most human-machine interfaces in use today are relatively complicated and
difficult to use. In U.S. Patent Application Serial No. 09/ 183,764, filed October
30, 1998, incorporated by reference herein, there is described a method for
processing a message, by a network of agents each of which has a view of its own
domain of responsibility. The method typically involves two main phases: an
interpretation phase and a delegation phase. In the interpretation phase, an initiator
agent which receives an input request and does not itself have a relevant
interpretation policy, queries its downchain agents whether the queried agent
considers such message, or part of such message, to be in its domain of
responsibility. Each queried agent recursively determines whether it has an
interpretation policy of its own that applies to the request, and if not, further
queries its own further downchain neighboring agents. The further agents
eventually respond to such further queries, thereby allowing the first-queried
agents to respond to the initiator agent. The recursive invocation of this procedure
ultimately determines a path, or a set of paths, through the network from the
initiator agent to one or more leaf agents. In the event of a contradiction, the
network is often able to resolve many of such contradictions according to
predetermined automatic algorithms. If it cannot resolve a contradiction
automatically, it learns new interpretation policies necessary to interpret the
subject message properly. Such learning can include interaction with a user, and
can be designed to localize the learning as closely upchain to the correct leaf agent
in the network as possible. After the appropriate paths through the network are
determined, in the delegation phase the request is then transmitted down each
determined path, with each agent along the way taking any local action thereon

and passing the message on to the next agent in the path.
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SUMMARY OF THE INVENTION

According to the invention, roughly described, the interpretation phase of
the above-described process is enhanced by allowing queried agents to respond to
queries before they have all their own responses from their own downchain agents.
In one embodiment, queried agents respond at a fixed time after receipt of a query,
whether or not they have received all responses from their own downchain agents.
In another embodiment, a queried agent makes claims to its upchain inquiring
agent upon receipt of each claim that the queried agent receives from its own
downchain agents. In another embodiment, a queried agent can receive a particular
query more than once, and in response to each, the agent responds with whatever
claims it then has. Other variations are also possible, as well as combinations of
these and other variations. In order to limit the duration of time during which
queries are active in the network, and thus during which new claims can still be
made, the agent originating a query can send a "forget-problem" message down
into the network after some period of time. Alternatively or additionally, the
originating agent can include a "depth-of-search" indication with each query,
thereby preventing propagation of the query through more than the indicated
number of agents. In the latter alternative, the originating agent can subsequently
make the same query to the same downchain agents, but with an increased depth-
of-search indication, if for example the originating agent is not yet satisfied with

the claims it received in response to the first query.

BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described with reference to the drawings, in which:
Fig. 1 shows an example of a third-order interaction graph of a
hyperstructure.
Fig. 2 illustrates a division of functions within an agent according to the
invention.

Fig. 3aillustrates a 7-segment display and a numbering of its segments.
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Fig. 3b illustrates a non-modular centralized solution for the 7-segment
display example.

Figs. 3c and 3d illustrate alternative agent networks implementing the 7-
segment display function.

Fig. 4illustrates an agent network implementing the logical NOR function.

Fig. 5 illustrates an agent network hyperstructure for parsing the grammar
of example 1.

Fig. 7 illustrates an AAOSA hyperstructure for parsing a grammar.

Fig. 8 illustrates a parallel algorithm for an agent.

Fig. 9 illustrates an agent network hyperstructure for the robot servant
example.

Fig. 6 illustrates a detail of part of the hyperstructure of Fig. 9.

DETAILED DESCRIPTION

1. Introduction

Agent abstraction is a natural extension of object-oriented technology,
encapsulating the agent’s knowledge within an active process and providing a
standard interface for communication. The concept of large ensembles of semi-
autonomous intelligent agents working together is emerging as an important model
for building the next generation of sophisticated software applications.

An important difference between agents in an agent-oriented system and
objects is that agents contain predefined structures and functionality that gives
them the ability to communicate. In many cases, this commonality is extended to
include such processes as learning and planning. Thus, although the environment
and responsibilities of different agents in an agent-oriented system may be
different they can still have much in common. In the Adaptive Agent Oriented
Software Architecture (AAOSA) paradigm we encourage the exploitation of this
feature as much as possible so that the designer of an AAOSA based system is

faced with as simple a task as possible.
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AAOSA is a software methodology that proposes the break-up of complex
software into a community of simpler, independent, collaborating, adaptive,
message-driven components (AAOSA Agents). The goal of AAOSA isto provide
software designers with the necessary coordination amongst AAOSA agents
representing sub-domains of the software being developed in order to better meet
the needs of the entire application. This coordination is provided through pre-
defined messaging schemes between AAOSA agents.

We divide an agent into a white box, which contains standard data
structures and methods for communications, interpretations, and learning provided
by AAOSA, and a black box, which is defined by the designer and contains the
agent specific communications, interpretations, and processes. Fig. 2 illustrates an
agent having a white box and a black box and illustrates some of the functions
included in each. AAOSA, being object oriented in design, allows the black box
to override, inherit from, or change any module in the white box (i.e., the data
structures and methods in the white box are inherited within the black box, which
can therefore access and modify them). Bass has shown that a problem is covered
by a hyper-structure of computing elements. Fig. 1 shows an example of a third-
order interaction graph of a hyper-structure allowing cumulative interactions and
overlapping aggregates. Circles represent first order hyper-structures or computing
modules of the lowest complexity in the given domain. We propose the
representation of each level of a given hyper-structure by AAOSA agents.

The designer of an AAOSA application will:

« Break down the software to its manageable sub-domain elements (i.e.,

AAOSA Agents),

* Define which agents will be in direct communication with each other.
These direct links are important because they concretize the
designer’s view of the different hyperstructure levels. The higher
the level, the higher priority an agent will have in interpreting and

processing input.
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« Devise interpretation policies for each agent by considering the input to
the application from each agent’s point of view to decide if this
agent is responsible for processing all or parts of this input. An
agent claims a particular input if it, or one or a number of agents
down-chain to it are responsible for processing that input. In other
words an agent claiming an input would, upon delegation, either
process that input, or delegate it down-chain to one or a number of
agents that had in turn claimed that input, or both.

AAOSA, through predefined communication schemes, should pin point the
agent or agents in this hyper-structure that are responsible for processing a certain
input, and provide the necessary coordination between them in order to achieve
desired output. Our hope is that in this way the designer will have to deal mostly
with the breaking up and design of the software elements themselves rather than
the complexities of how to coordinate them. Therefore another important
difference between AAOQOSA agents and objects in the Object Oriented
methodology is that an agent does not have to know which agents are responsible
for a certain process or data structure, or that process’ invocation details.

By taking each software module to be an agent we can take advantage of
anumber of desirable features which we will impose on the designer as definitions
of AAOSA agents: Each agent should be independent of the others and the only
means of communication is messaging, handled by the white-box. This will
provide for the possibility of parallel, distributed, and even mobile modules.
Agents can be processing several requests at the same time.

No centralized control is enforced over the resulting network of AAOSA
agents covering the scope of a software application. In this architecture, agents
introduce themselves and their abilities to one another at the beginning or during
execution. Agents can therefore be added to or removed from the application at
runtime. This is one of the major differences between AAOSA and its precursor

the Open Agent Architecture.
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Another relative of AAOSA is ARCHON (Architecture for Cooperative
Heterogeneous On-line Systems). Unlike ARCHON though, the predefined
portion of each agent (i.e., the white box) does not have to maintain a model for
the designer defined portion (i.e., the black box) or any other agent it
communicates with.

By now it may be apparent to the reader that the kind of agents we are
characterizing in this paper, having taken a bottom-up view of multi-agent
technology, can be quite fine grained. Unlike the Al sense of multi-agency,
AAOSA agents are not centralized human-like agents with potentially conflicting
intentions working together. Rather they are distributed software-object-like agents
designed to work together cooperatively to implement complex applications.

In this paper, we will introduce the AAOSA architecture and some of its
applications. An AAOSA system is actually parsing input in its interpretation
phase. By examining the capabilities of an AAOSA parser, we will be able to give
concrete evidence of the power of the AAOSA methodology. We will show that
the AAOSA based parser can parse context-sensitive grammars with reasonable
complexity. The main application of AAOSA has so far been in natural language
user interfaces. We will discuss the differences between natural language
processing and grammatical processing of languages and discuss the application
of a more robust design for natural language user interfaces. The paper ends with

an outline of what has been done and what lies ahead in this area.

2. AAOSA Agents and Coordination

Processing of the input is done in two main phases: an interpretation phase,
in which the agent, or agents responsible for actuating an input are located, and a
delegation phase in which the processes that have been located are called.

Each AAOSA agent must be able to interpret input sent to it as the content
field of messages from other agents if so requested in the performative field of that
message (Table 1). The result of this interpretation may cause the agent to claim

that input as its own and/or to declare certain other agent/s responsible for
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processing it. Agents may consult other agents in order to complete their claims.
These latter agents we will call down-chain agents relative to the requesting agent.
This is a relative term and depending on the direction of the flow of requests, an
agent may be down-chain (receiving) or up-chain (requesting) with respect to

5 another agent.

Table 1) AAOSA Standard Inter-agent Message Fields.

Unique Query ID

10 Sender Agent

Message content (input to AAOSA Agent)

Performative

Priority or sender agent’s hyperstructure degree

Claim made by agent about the content

15 Depth of search or allowable distance from initiator of query
Depth so far, or distance query has been propagated down-chain
History of agents that have processed this input before

Agents that are first to receive input to the AAOSA system are called input

20 agents. These agents initiate the interpretation phase for that input and are the

entry points to the system, generating unique query IDs for new input. This does

not mean that other agents do not query input agents. Cycles are prevented by

preventing the agents from repeating processes already executed over the same
query. Input agents are also responsible for announcing the end of the processing
25 of a specific query to all down-chain agents.

Input may also have been generated inside the system and therefore any
agent could potentially be an input agent. In the simplest form, a claim means all
of input belongs to the agent making the claim. In many cases, as we shall see in
the examples, a claim should contain other information as well (e.g., confidence

30 in claim, name of claiming agent or symbol representing various claims one agent
can make, the level of the claiming agent relative to the input agent of this query,

parts of input that is being claimed).
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The software designer is responsible for providing each agent with its
interpretation policy. An interpretation policy is comprised of a set of rules used
to decide to return a claim that a piece of the input belongs to that particular agent.
The interpretation criterion may be the message content but is not limited to it.
Process history, probabilities and outside information (e.g., interaction with other
agents) are examples of some of the other parameters that may be used by the
interpretation policy. Note that interpretations do not determine whether a
particular input does not belong to the agent. Determining whether an input does
not fall into the scope of responsibilities of an agent, as well as whether it does,
amounts to modeling the world (W=Pu~P) and undermines the distributed nature
of AAOSA agents. Therefore, the application of interpretation policies to input
either result in a successful interpretation or a “don’t-know” state.

The performer module in the white box actuates other modules in the agent
based on the message performatives received from other agents. Each message
includes a message content, and a performative that specifies what should be done
with that content. No overall standard data representation is needed for the
message content. Agent specific data can be transferred in messages in whatever
format the sender and receiver agree upon. The designer can add agent-specific
performatives in sub-domains to facilitate special communications between agents.
AAOSA provides a set of predefined general performatives by which the

coordination of agents is managed (Table 2).

Table 2) Some AAOSA predefined inter-agent message performatives.

Register Agents make each other aware of their
existence.

Advertise An agent declares it can handle certain input.

Un-Advertise An agent requests not to receive input from
another agent.

. An age h,

This-Is-Yours ag r_1t announces a'mot er gge?t as
responsible for handling certain input.

Is-This-Yours? An agent' that can n_ot interpret a partlcplar input
requests interpretation from down-chain agents.
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Agent requests another agent to backtrack to a
Restore state before processing took place on certain
input.

Down-chain agent has failed to interpret input
sent down with an Is-This-Yours? Performative.
Down-chain agent has encountered an ambiguity
Maybe-Mine in interpreting input sent down with an Is-This-
Yours? Performative.

Down-chain agent has been successful in
It-Is-Mine interpreting input sent down with an Is-This-
Yours? Performative.

Agent requests immediate response, be it

5 Commit incomplete, to input sent down with an Is-This-
Yours? Performative.

A new interpretation policy is suggested to an
Learn agent that will result in the sender agent being
interpreted as responsible for certain input.

An interpretation policy that results in the sender
Un-Leamn agent being interpreted as responsible for certain
input is revoked.

Alternative process or interpretation is requested
for input that has already been processed.

A previous request is canceled and the receiving
Forget-Problem agent will remove any temporary storage of
interpretation results.

Not-Mine

Dissatisfied

10

In the interpretation phase, each agent, upon receiving input with an “Is-
This-Yours?” performative, attempts to interpret the input by itself. If
interpretation is successful, the agent will report claims using the “Jt-Is-Mine”
performative. As we shall see, this does not always mean that this agent will be

15 assigned to do its processing of the input.

On the other hand, if an agent can not interpret the input as its own, before
reporting failure, it must check with other down-chain agents. If all down-chain
agents report “Not-Mine”, this agent will also report “Not-Mine™ to its requesting
agent. If at least one down-chain agent is able to interpret the input successfully

20 and reports back with “Jz-Is-Mine”, our agent will also report success. It follows
that agents that have no down-chain agents to query may report “Notz-Mine " upon

failure to find an interpretation policy that applies to the contents of the query
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message they have received. To prevent agents from repeatedly processing the
same queries in a cycle, each agent keeps track of queries it has processed and will
reply “Not-Mine” to any query it has already responded to and has no new claims
for.

After a path of down-chain links from a top-level agent to some agent or
agents responsible for processing input is found (using the “Is-This-Yours?”
performative), the delegation phase can start. In this phase, the “This-Is-Yours”
performative is used to call agents on these paths to do the actual processing.
Agents receiving a “This-Is-Yours” request may reinterpret the delegated input, or
they may use pre-stored interpretation or down-chain query results to, in turn,
process or delegate (or both) the input or parts of it.

Ambiguities of which agent owns a particular piece of input, and methods
for resolving them, are central to the proper operation of AAOSA. Ambiguities
occur when an agent that a job has been delegated to (i.e., has received a message
with the This-Is-Yours performative) has not been able to interpret the message
content as belonging to it based on it’s interpretation policies, and

« Either more than one down-chain agent that was consulted with claim it,

or,

« None of the agents consulted with claim it.

An ambiguity can be resolved by explicit interaction with another agent
(e.g., an agent representing the human user). This is not always desirable or
possible and therefore implicit resolution methods must be used. Table 3 describes
methods that can be used to resolve ambiguities in AAOSA. The choice of
ambiguity resolution methods and the way they are combined to achieve best

results depend on the application in which they will be used.
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Table 3) Ambiguity resolution methods.

Claims from agents representing higher
Priorities degrees in the hyperstructure may have
priority over the rest.

Agent that has claimed input most recently
Context | Recency is more likely to be responsible for
processing disputed input.

Status Current status of a data-structure an agent
is responsible for may make it more
eligible for claiming disputed input.
Agents basing their claims upon a larger
portion of the input (i.e., focus), or parts of
the input closer to the requesting agent’s
focus (Focal Point) are more likely to be
responsible for disputed input. Agents
claiming mutually exclusive input may all
be responsible at the same time.

More successful agents are chosen to
process disputed input based on their prior
performance history.

Interaction A dispute is settled by referring to another
agent.

Focus and Focal
point

Statistics and
Probabilities

Ambiguity and its resolution is particularly important in AAOQOSA because
it provides a means by which agents can change their behavior (i.e., learn) and
react to unexpected input.

As said before, an agent that does not have a suitable interpretation for
input contents of a message sent to it with the “Is-This-Yours ?” performative will
propagate this message to it’s down-chain agents. By suitable interpretation, we
imply that in cases where the interpretation policy uses a small part of the whole
input as its decision making focus, the agent may decide to query down-chain
agents on the remainder of the input anyway, so as to make more accurate claims.
In other words, agents complete their claims after receiving the results of their
queries to their respective down-chain agents. Hence, there may even be cases in
which an agent that has successfully interpreted parts of the input decides to query

its own down-chain agents.
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Even if this was not allowed, the problem of query propagation should be
addressed by AAOSA: When do we decide to abandon a query or stop propagating
it down-chain?

This depends very much on the application. In cases where the depth of
propagation is not that much there may be no need for stopping it. In other cases,
such as interactive applications, in which response time is important, time elapsed
since first agent received input from user may be used to issue a message with the
“Commit” performative. This performative will cause receiving agents to abandon
any query response not received and act upon the information they have, be it
incomplete. Another approach would be to time-stamp requests at origin so each

agent can reject requests older than the allowable overall response time.

3. Designing AAOSA-based Applications

The AAOSA design methodology is essentially a bottom-up approach: The
tasks necessary to achieve overall goals are identified and suitably decomposed.
Then the data-flow between these tasks is determined. This way, pre-existing code
can also be incorporated in the design as non-decomposable tasks by wrapping
them into the black-box of AAOSA agents.

The break up of software into sub-domains is the responsibility of the
designer who should also define the interpretation policies. This is done by
looking at the system input from each agent’s point of view. It is important not to
over-generalize to avoid claiming input that really belongs to other agents. But
there is no need to be too conservative either. Designers should keep in mind that
interpretations are done in the context of the communication path by which the
input has arrived to the agent and resolving ambiguities that arise as a result of
overlapping interpretations are the responsibility of up-chain agents.

It is advisable that each agent be kept simple in its responsibilities and be
limited in the decisions it needs to make to reap the benefits of distribution and to
enhance its learning abilities. The overhead of the required units (the white box)

should be taken into consideration.
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Agents can be replaced at run-time with other more complete agents. The
replacement can even be a hierarchy or network of new agents breaking down the
responsibilities of their predecessor. This feature provides for the incremental
design and evaluation of software.

In AAOSA, the emphasis is on the distribution of capabilities. Therefore
if a capability is general enough to be coded into the White-box and distributed
over all agents it is much more desirable than assigning a specific agent to be
responsible for it (e.g., Using the learning module in the white-box rather than
creating a separate learning meta-agent).

In the following example we shalil see that the manner by which a system
is agentified depends on the various objectives the designer has in mind.

3.1 The seven-segment example

Let us follow the design of a simple application to observe the various
advantages AAOSA may bring. This discussion will center on Figs. 3a-3d,
sometimes collectively referred to herein as Fig. 3. The system to be designed
takes a number between 0 and 9 and switches on the appropriate LEDs in a seven-
segment display. Fig. 3a illustrates the display and the numbering of its segments.
There are, of course, tried and tested algorithms for designing this system that give
us optimal results. This is mainly because the problem is a limited one, and all
possible input and desired output is known.

The first step in the design of this system would be to identify the range of
possible input to the system and the set of output functions available. In this case,
there are 10 possible inputs namely the numbers 0 to 9. There are 7 functions
which should be used to produce the overall desired output: Switch LED 1 on (or
On(1) for short), On(2), On(3)... On(7) on. Fig. 3b illustrates a non-modular
centralized solution, which involves 48 functions and 5.5 condition checks on
average assuming each number is inputted with equal probability (1/10).

An alternative to this approach would be to have an agent represent each
function and an input agent to receive the input and distribute it. Such an agent

network is illustrated in Fig. 3c. If the input-agent were to have any interpretations
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ofits own, they would be of the transitive kind, declaring an input to belong to one
of the down-chain agents. However, in this example, transitive interpretations are
not necessary because the fact that input has been handed down through the Input-
agent does not affect the route or process it may be taking later. It 1s always
preferable not to use transitive interpretations as this prevents the agents from
being self-sufficient. To prove that there exists an AAOSA hyperstructure withno
transitive interpretations for any computable function, Fig. 4 illustrates the logical
NOR function using AAOSA. The input agent receives I,1, as input, and processes
it in the manner described herein. Therefore, in the case of the hyperstructure in
Fig. 3c, each agent has its own interpretation policy, namely checking its input
against the number it represents.

Although the number of functions in this system is the same as the
centralized one in Fig. 3b, certain useful features have come about because of the
way we have modularized. Each agent is reusable in other systems, and, in the case
of using a parallel platform, the number of conditions that may be checked on
average would be much less (in a fully parallel system it would be 1 condition on
average).

As we stated before, a system can be modeled using many different
hyperstructures and the choice of the hyperstructure to be used depends on the
requirements of the application. Fig. 3d illustrates a different network
hyperstructure for implementing the 7-segment display function. This network is
modularized based on the optimization of the number of functions, while
maintaining a relatively low number of average condition checks. The total
number of functions implemented here is 24 (half that of the Fig. 3b and 3c
designs). The average condition check, if the system is taken as a running on a
fully parallel platform, can be calculated as follows.

Each possible input between 0 to 9 would occur 1/10 of the time,

If input were 1, 2, or 3, we would be checking 1 condition,

For inputs 4, 6 and 7, 2 conditions would have been checked,

For inputs 0, 3 and 9, the number of conditions checked would be 3, and
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For input 8, 4 conditions would have to be checked.

Thus, the average conditions checked would be 2.2. Of course, in
calculating this number we disregarded the conditions checked in the white-box
of the agents during the query and delegation phase. However in general, unlike
this example, the complexity of the interpretation process for each agent usually
outweighs the complexity of the processes involved in these two phases. In
comparison to the hyperstructure in Fig. 3¢, we have reduced the reusability and
increased the average number of condition checks, in order to minimize the
number of functions.

3.2 Learning in AAOSA

The combination of machine learning and multi-agent systems can have
benefits for both. Multi-agent systems having learning capabilities can reduce cost,
time, and resources and increase quality in a number of ways:

*» Ease of programming

* Ease of maintenance

» Widened scope of application

» Efficiency

* Coordination of activity

On the other hand, machine learning in a multi-agent setup becomes faster
and more robust. Learning can improve performance in AAOSA software by
improving speed and accuracy, reducing interactions, providing generalizations,
and helping the system to tune in to different user preferences.

Learning can be applied to AAOSA in a number of ways depending on the
objectives and application of the software. For example, in large and complex
software, distributing the learning over a hyperstructure of more simple sub-
domains is less complex than centralized learning. Learning can be used to
improve the agent’s own specialized performance and also to improve its
interpretation policy to reduce ambiguities. This latter form of learning is driven
by the ambiguities themselves. There are various machine learning algorithms that

can be used in the learning module of the white box, sometimes in combination.
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For instance, Reinforcement Learning can be used to fine tune the choice of
relevant interpretation rules, while rule learning algorithms add or update them.
The former is more gradual and statistics-based while the latter changes the agent
behavior in quantum leaps and is based on a comparison of the actual
interpretation with the desired one.

Learning should guarantee that the balance of distribution and learning
methods should not impede each other. For instance when a new interpretation
rule is learned by a down-chain agent, “A”, it may have to send Un-Learn
messages to all up-chain agents requesting them to remove any identical rule that
results in delegation of input to agent “A”.

Learning can be deployed to automate disambiguation, and/or resolve
conflicts between interpretation rules in a single agent. The latter case occurs when
a single agent has rules that may result in conflicting interpretations based on
similar decision criteria. In these cases, weighting the rules based on past
experience is a form of learning.

In one embodiment, the learning algorithm is a very simple rote-learning
algorithm that records interpretation results for ambiguities explicitly
disambiguated for the agent by the user. As we shall see in the next section, this
learning algorithm is sufficient in the interactive natural language interface
application. In other cases where implicit statistical (history-based) disambiguation
is used more often, the learning algorithm can also be more complex. In these

cases reinforcement learning methods could be used.

4. An AAOSA Parser
The examples of the previous section are relatively simple because:
« All possible input is known and manageable at design time,
» Only one agent is delegated to at each one time, and
« No ambiguities can occur because the interpretation policies of each

agent are mutually exclusive over the input.
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We will now discuss examples in which some or all of the conditions
above are not met.

AAOSA can be used to parse input given in the form of strings of
characters. We will show that the AAOSA parser can parse any context-sensitive
grammar and we will discuss the time-complexity of this parser. A parser only
interprets input and so an interpretation phase similar to that discussed in section
2 is enough. We will also not need any learning therefore a subset of the
performatives in the previous section are needed here. The AAOSA parser is of
importance to us because it shows the power of the interpretation phase of the
AAOSA methodology.

In a parser, input is not predictable at the time of design and so each
agent will have to consider parts of the whole input when interpreting it.
Therefore, the claims made by different agents will have to include the portions
of the input being claimed. In order to do so, we introduce the concept of foci.
We denote a focus F by (f, I,) where f, the focus set, is a set of tuples, [s,..e],
each holding index information about part of the string /,. We will define the
functions string(F) and focus-set(F) as functions that return fand I, respectively,
for a given F.

For instance the focus ({[0..3]}, “Babak™) is pointing to the first four
characters: ™Baba" and the focus ({[0..2], [4..4]}, “Babak”) is pointing to the
first three, "Bab", and the last one, "k". We will refer to each member of fwith
fli], where i is the index of the members and 0 < i < NOMB(f). NOMB is a
function returning the number of members f has. The functions s(f[:]) and
e(f[i]) return s, and e, respectively. No two members of f can be overlapping:

Vi, 0 < i < NOMB(f), 3 j, 0 < j < NOMB()),

s(li) < s(UD < e(liD V
s(li)) < e(D) < e(fliD)
and all members in f are kept sorted in ascending order:
Vi, (0 <i< NOMB(f) - 1), s(fli - 1) < s(fliD < s(f[i + 1]).
If members f[i], and f[i + 1] € fhave the following property:
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e(fli) =s(fli +1D -1
then we can merge the two members into one and remove the other by making
the following change:

e(fli]) - e(fli + 1))

NOMB(f) -« NOMB(f) - 1

fx] = flx + 1] for i <x < NOMB(f)

So for instance the focus ({[0..2][3..71}, 7, ) is the same as the focus
({[0..71}, 1)) for any /.. In the remainder of the discussions in this section all
foci only have one member and we will omit the indexing for the sake of
simplicity (i.e., we will take f'to mean f[0]).

If £, and £, are the focus sets for foci F and F, respectively, we say F
is the predecessor of F, (F, « F,) if:

F,«F, < e(fiINOMB(f)) — 11) = s(f,[0]) - 1; 1)

As discussed in the preceding sections, an agent that has successfully
interpreted a particular input (Z;) will be sending one or more claims to the
agent immediately up-chain that originally sent this input in the form of a
query. These claims are either generated by this agent, or have been received
from down-chain agents and are being propagated by this agent. A claim (C)
is a tuple (F, SYMB) where F is the focus and SYMB is a symbol representing
the claim. The functions focus(C) is defined to return the focus F of claim C
and the function symbol(C) is defined to return the symbol SYMB of claim C.

A sequence is a list of claims <C,, ..., C,> (m > n) such that:

(m>n)=Vi|(n<i<m) (focus(C) « focus(C, . ,)) 2)

A<C, ..., C,>(m > n)1is a full sequence if:

(s(focus-set(focus(C,))) = 0) N\ (e(focus-set (focus(C,))) = length({)) — 1)
where length(l) is the length of the input string (i.e., the character count). We
must note here that all claims C made by an AAOSA agent string(focus(C))is
the same and in the case of the AAOSA parser it is always equal to 7, therefore
we will omit the string portion of the foci in the examples given from here on.

The sequence string for a sequence <C,, ..., C, > is:

Attorney Docket No.: DEJI-01001US1 WSW
/wsw/deji/1001.app.wpd -22-



10

15

20

25

30

symbol(C,). symbol(C, ..,)... symbol(C,)

Let us now consider languages represented by grammars. A language
is any set of sentences over an alphabet. A sentence is any string of finite
length composed of symbols from the alphabet and the alphabet itself is any
finite set of symbols. One way to represent a language is to give an algorithm
that determines if a sentence is in a language or not. A more general way is to
give a procedure which halts with the answer “yes” for sentences in the
language and either does not terminate or else halts with the answer “no” for
sentences not in the language. There are languages we can recognize by a
procedure, but not by an algorithm.

A grammar is a class of generating systems originally formalized by
linguists in their study of natural languages. We denote a grammar G by (Vy,
V5 P, S). The symbols Vy, ¥, P, and S are, respectively, the variables, from
which strings of words could be derived, terminals, which play the role of
words, productions, which show the relations that exist between various
strings of variables and terminals, and the start symbol which is a variable that
generates exactly those strings of terminals that are deemed in the language.
We denote the language generated by G with L(G). A string is in L(G) if:

« The string consists solely of terminals, and,

» The string can be derived from S§.

A sentential form is a string of symbols from ¥ u V7. A sentential form
2B is derived from the sentential form yag if there is a grammar rule a - £,
and we write yap = xB¢. A derivation sequence from the sentential form n to
the sentential form « is a sequence 7; ..., 1, of sentential forms such that n=mn;
=...= 1), = k; then we write —="k. In the above notation « and f are said to be
the left-hand side and the right-hand side of the production rule a ~ B
respectively. « consists of a single sentential form. S may consist of a number
of possible sentential forms S, (usually separated by “|”). & is an empty sentence
or a sentence consisting of no symbols. We will also define the following:

V=VyulV;
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7 : The number of elements of V.
V* : The set of all sentences composed of symbols of V.
V=V - {e}

A context-free grammar is a grammar G = (Vy, Vp, P, S) in which for
every production o - B in P, o is a single variable, and B is any string other
than ¢ (null or empty string). So a production of the form 4 - B allows the
variable 4 to be replaced by the string B independent of the context in which
A appears.

Example 1. Consider the context-free grammar G = ({S, 4}, {a, b}, P,
S), where P consists of:

S-AB
A - adb|ab
B-cBd|cd

The string aabbccdd does belong to the language this grammar
represents because:

S = AB = aAbcBd = aabbcBd = aabbccdd

4.1 The Algorithm

To parse a language using AAOSA, we first need to build a
hyperstructure based on the grammar to be parsed:

I We create an AAOSA agent for each production rule. We are
assuming that each production rule in the grammar has a unique
left-hand side. We will denote the production rule represented
by agent 4 with R,.

II. Agent B should be down-chain with respect to agent 4, if in the
right-hand side of R,, there is a reference to a variable that
exists in the left-hand side of Rj.

111 The agent representing S is the input-agent to this
hyperstructure.

IV. The right-hand side of the production rule an agent is

representing is that agent’s interpretation policy.
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As an example, the hyperstructure for parsing the grammar of example
1 is shown in Fig. 5.
In an agent new claims can only be made based on existing claims C,,
... C,,(m = n)if C,, ..., C,constitute a sequence, and the symbol-string for C,,
..., C,, match one of the possible reductions on the right-hand side of the
production rule that 4 represents (interpretation policies). We can formalize
this condition as follows:
3cC,...,C, 3B, €R,| (m > n) Asymbol(C,).symbol(C,.,).. .symbol(C,)
=B NC,«C,,; «..«C, 3)
In this case, the symbols on the left-hand side of R, are the symbols of
the possible claims. These claims themselves constitute a sequence. Note that
not all these claims are necessarily new and there is no need to repeat claims
as each agent stores the claims it has so far received or made.
All computable foci for new claims should be computed using the
following clues:
 New claims, C,, ..., C, (a > b), made based on C, ....C,(m=n),will
have the following feature:
focus(C,) v focus(C,,)) u ... U focus (C,) = focus(C,) u
focus(C,,1) U ... u focus (C,).
Therefore, we always know that
s(focus(C,)) = s(focus(C,)), and,
e(focus(C,)) = e(focus(C,,))-
* Also:
(b—a=m-n)=Vi|(0<isb-a)(focus(C,.,) = focus(C, . ,))
(a < i <b) A (symbol(Cy) € V) = focus(C,) is known and it follows that:
(a < i < b) N (symbol(C)) € Vp) = s(focus(C, , ) = e(focus(C)))
(a<i < b) A (symbol(C) € V) = e(focus(C, ;) = s(focus(C))
It can be seen that there are cases in which not all the foci of the claims
produced can be computed. We shall see that this has no effect on the

soundness of our algorithm.
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Input to the system (Z,) is a string of terminals. The input is represented
using a set of claims (#,) and the length of the input (length(l,)). For example,

the string aabbccdd would be represented as follows:

H, = {(a, ({[0..01}, 1)) (a, ({[1..11}, 1)) (b, ({[2.:2]}, 1)) (b, (i[3..3]},
1)) (¢, ({[4..41}, 1)) (e, ({[5..51}, 1)) (d, ({[6..61}, L)) (d, ({771}, L))} and
length(l) = 8
Each agent keeps a list of claims it has made so far. New claims in
response to a certain query are sent up-chain when they are made, unless a
message is received requesting a stop to the processing of that query (i.e., a
message initiated by the input with the performative Forget_Problem when
parsing has ended). Agents receiving a query respond with the new claims they
have made that have not been sent as a response to this query before. Agents
complete their response to queries as new claims are made or received. Agents
may have to query immediate down-chain agents to complete their claims.
Thus, with the hyperstructure being designed according to I1, if a claim is made
in a down-chain agent that is useful to any other agent X up-chain, X will
eventually receive it. An algorithm implementing this process is as follows:
1 The agent representing the start symbol (Agent S or the input agent for
the parser) makes any claims it can based on H,. The algorithm for
agent S is as follows:
1.1 Convert input into claims,
1.2 Make all possible new claims based on existing claims by
applying condition (3)
1.3 if3C|C=(S, ({[0..length(l) - 11}, L)) then
1.3.1 Conclude /, € L(G)
1.3.2 End parse.
1.4  Depth of search - 0
1.5  Depth so far < 0
1.6 if any down-chain agent exists then

1.6.1 Query all down chain agents
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1.7
1.8

else
Conclude /; ¢ L(G)
End parse.

Agent S, upon receiving responses to its query, will:

2.1

2.2

2.3

2.4

2.5

Make all possible new claims based on existing claims by

applying condition (3)

if new claims have been made then

2.2.1 new claims < true

2.2.2 if Depth of search > Depth so far then
2.2.2.1goto2.1

if 3 C| C = (S, ({[0..length(l) - 11}, I))) then

2.3.1 Send Forget Problem message to all down-chain agents

2.3.2 Conclude I, € L(G)

2.3.3 End parse.

else

if (new claim = false) and (All agents have been visited) then

2.4.1 Send Forget Problem message to all down-chain agents

2.4.2 Conclude I, ¢ L(G)

2.4.3 End parse.

else

if all down-chain agents have responded to query with the

current depth of search then

2.5.1 New claim - false

2.5.2 Depth of search « Depth of search + 1

2.5.3 Depth so far - 0

2.5.4 Query all down chain agents again.

Each agent, upon being queried, will:

3.1

Depth so far — Depth so far + 1
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3.2  if Depth so far < Depth of search then
3.2.1 Make all possible new claims based on existing claims
by applying condition (3)
3.2.2 if new claims have been made then
5 3.2.2.1 new claim < true
3222 go to 3.1
3.2.3 if 3 C| Cis a new claim not sent to querying up-chain
agents then
3.2.3.1 Send It-Is-Mine message containing C to
10 all querying up-chain agents
3.2.4 Query all down chain agents
else

33 Send Not-Mine to querying up-chain agents

15 4 Each agent upon receiving responses to its query, will:
4.1 Make all possible new claims based on existing claims by
applying condition (3)
4.1.1 if new claims have been made then

412 goto4.l

20 4.2 if 3 C| Cis anew claim not sent to querying up-chain agents
then
4.2.1 Send It-Is-Mine message containing C to all querying

up-chain agents

25 An input string 7, belongs to L(G), where G is the grammar represented
by an AAOSA hyperstructure, if the following claim is made:
(S, ({[0..length(I) - 11}, 1))
An input I, does not belong to L(G), where G is the grammar
represented by an AAOSA hyperstructure, if all agents have been visited and
30 no new claims have been made during a cycle in S. For a given agent, a cycle
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is the time between querying down-chain agents and receiving all responses
from them. In the algorithm, when all agents have been visited at least once,
we are guaranteed a cycle between each incrementation of the Depth of search.
This end condition is correct because only agents make new claims and the
claims made are based upon previously made claims. If in one cycle, no new
claims were made by all the agents, no new claims would be possible in the
succeeding cycles either.

Note that this condition forces the input agent to be, at least, aware of
the number of agents in the hyperstructure. Another, possibly less efficient,
approach would be to set the end condition in step 2.4 of the algorithm to be
as follows:

Depth of search > (1 + 1)lreh 1
We shall see, in the next section, why using this end condition is correct.

Fig. 5 shows the AAOSA hyperstructure for example 1. Note that
agents may be down-chain with respect to themselves. There isno need, in this
case, for agents to query themselves and they may simply reapply their
interpretation policies on the claims they have made so far every time they
make a new claim. Let us see how this system can parse the input aabbccdd to
see if it belongs to the language represented by the grammar in example 1:

1) Agent S receives input. No new claims apart from the input

claims can be made by § at this point,

2) Agent S queries agents 4 and B (Is-This-Yours?),

3) Agent 4 makes the following claims and sends them up to agent
S:
(4, {[1..21}) (4, {[0-31})
4) Agent S cannot make any new claims based on Agent A’s
response,
5) Agent B makes the following claims and sends them up to agent
S

(B, {[5..6]}) (B, {[4..7]})
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6)

Agent § is able to make the following new claim

(S, [0..7])

and we conclude that aabbcedd is valid in this language:

Note that the order of the sending and receipt of queries and responses

does not have any effect on the overall outcome.

The grammar in example 1 is that of a context-free grammar. A less

restricted form of grammar is the context-sensitive grammar. In this grammar

for every production a ~ B in P, we may have |B| > |a| (we use x| to stand the

number of symbols in the string x).

Example 2. The following grammar is context-sensitive:

S - aSBC | aBC
CB - BC

aB - ab

bB - bb

bC - bc

cC - cc

The language L(G) contains the word a"b"c" for each n > 1.

Fig. 7 illustrates an AAOSA hyperstructure for this grammar. Letussee

how this system can parse the input aabbcc to see if it belongs to the language

represented by the grammar in example 1:

1)
2)

3)

4)

5)

Agent S queries all at Depth of Search 1,

Agent "aB" makes claim ({[2..2]}, B) in reply to agent S’s
query,

Agent "bB" makes claim ({[3..3]}, B) in reply to agent S’s
query,

Agent "bC" makes claim ({[4..4]}, C) in reply to agent S’s
query,

Agent "¢C" makes claim ({[5..5]}, C) in reply to agent S’s
query,
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6) (S cannot make any new claims and increments Depth of search

to 2)

7 Agent "CB" receives first responses from down-chains and
claims ({[3..3]}, C) and ({[4..4]}, B),

8) S, having received this latest claim from "CB" can claim
({[1..3]}, S) based on ({[1..1]}, a), ({[2..2]}, B), and ({[3..3]},
0,

9) The checking loop for S will not break because the resulting
claim from step 8 makes the agent be able to make a new claim,
namely ({[0..5], S) based on ({[0..01}, @), ({[1..3]}, S,
({[4..4]}, B), and ({[5..5]}, ©). The parsing thus ends
successfully at a depth of 2.

4.2 The Proof

In order to prove the soundness and correctness of our algorithm we
will prove, first, that if an input string does belong to the grammar of any
language, it will indeed be claimed by the AAOSA parser representing that
grammar. Then, we will prove that for context sensitive grammars the AAOSA
parser can also determine, in finite time, whether a given input string does not
belong to the represented language.

Lemma. In the AAOSA parser described above, all the symbol strings
0,0;...0,, for full sequences g = <q,, qy, .-, §,;~ aIC sentential forms from
which the input string I, = 4,4,...4, can be derived with grammar G. To put it
formally:

Y G1s @or +os Gng | SUOCUS(,)) = O A e(focus(g,) = length(I) — 1 N g, «
Gr €G3 & ... €y

= symbol(q,).symbol(q,).symbol(q,).....symbol(q,,) ="4,4,.. 4,

Proof of lemma. We first prove that the theorem holds if the claims
made are only input claims (#,). Then, we show that the addition of a claim,

which is done under the condition (3), preserves the above conjecture as well.
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Casel: The only claims made are H,. In this case there is only one full
sequence. The symbol string of this full sequence is none other than the input
string A,4,...4, itself, and obviously 4,4,...4, is a valid derivation for itself.

Case 2: We will assume that an agent is in a state in which all full
sequences consisting of claims it has made so far are intermediate derivations
for the input string. We will prove that the introduction of a new claim-
sequence, according to condition (3) above, introduces new full sequences that
are also intermediate derivations for the input string. To put it formally, if we
denote the g claims made so far with Xi (0 < i < g), our inductive hypothesis
1s:

VX (0<i<g)3dXJKX, . X |s(focus(X))=0A e(focus(X))) = length(Il)— 1A
X, « X, « .o « X« ...« X,

N symbol(X,).symbol(X,).....symbol(X).....symbol(X) =" A,A,...A,

If now an agent makes the new claim-sequence ¢ = <C,, ..., C;> from
the sequence <X, ..., X,> using condition (3). The condition holds that:

(m>1)=Vi|( <i<m)A (focus(X) «focus(X . ,))

Each new full sequence ¢ =<gq,, ..., ¢ > that is introduced by ¢ contains
at least one of C,, ..., C,. We will first show that g contains all claims C,, ...,
C.

g is a full sequence, therefore

s(focus(q,)) = 0.
¢ is a sequence so
s(focus(C,)) < s(focus(C,)) < ... < s(focus(C,)) 4)

Thus a full sequence that contains a claim C, for 1 <i < k, must also

contain a claim w such that:
w« C,

One possible appropriate claim that satisfies this condition is C, _ ;.
Applying this result iteratively, and extending the result to C,, we come to the
conclusion that a full sequence containing a claim C; for 1<i < £, also contains

all other claims C; for 1< j <i.
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From equation (4) we can also see that a full sequence that contains a

claim C, for 1 < i <%, must also contain a claim w such that:
C a«w

One possible appropriate claim that satisfies this condition is C, | ;.
Applying this result iteratively, and extending the result to C;, we conclude
that a full sequence containing a claim C, for 1 < i < £, also contains all other
claims C, fori<j < k.

Thus, we have proven that a full sequence, which contains one claim
from the new claim-sequence ¢, contains all the claims in ¢. Full sequences
that contain all the claims in ¢ are of the form:

S=<yp, s Vo Cop e, CoVaspp o0 Vp> ®)

Some special cases in the above model are when a = 0, when C, is the
first claim in the full sequence, when b = @, when C, is the last claim in the full
sequence, and when a = b = 0, when the full sequence consists solely of the
claims in c.

Based on the definition of a sequence we have y, « C,, which means:

s(focus(C,)) = e(focus(y,)) + 1

We also had:

s(focus(C,)) = s(focus(X,))

Soy,, ..., y, are all possible sequences that start full sequences <y,, ...,
Voo Xp o>

Further more, again based on the definition of a sequence we have C,
« ¥, .1, Wwhich means:

e(focus(C))) = s(focus(y,. ) - 1
We also had:
e(focus(C,)) = e(focus(X,,))
Soy,, ..., y,are all possible sequences that end full sequences <..., X,,

m

Varps w0 Vp >
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Since <Xj, ..., X,> is a sequence, we have demonstrated that the new
full sequences <y,, ..., ¥, Cp, .., Cis Y44 p» ---» ¥, > contain claims y, such that
<V, e Voo Xy s Xy Yo i 1 -, ¥, > are also full sequences.

From our inductive hypothesis the symbols of the full sequence<y,, ...,
Yo Xpp ooy Xy YVa i 1v ---» Vp > Which are symbol(y,)... symbol(ya) symbol(X))...
symbol(X,) symbol(y, . )... symbol(y,) are an intermediate derivation for the
input string. This means that there are sentential forms v,, v,, - .., Y4 such that:
symbol(y,)... symbol(ya) symbol(X))... symbol(X,,) symbol(y, . )... symbol(y,)
=y ==y = A4,...4,

The new claim-sequence ¢ was allowed to be made because there is a
grammar rule:

symbol(C))... symbol(C,) ~ symbol(X))... symbol(X,) € R, so

symbol(y,)... symbol(ya) symbol(C))... symbol(C,) symbol(y, . ,)...
symbol(y,) =

symbol(y,)... symbol(ya) symbol(X))... symbol(X,) symbol(y, . ;)...
symbol(y,) =

V== Ya= A4,.. A, (6)

In other words, the new full sequence also represents an intermediate
derivation for the input string.

Theorem 1. If the § agent makes a claim for which the new full
sequence consists solely of a claim with the symbol § and the focus
{[0..length(l) - 1]}, then the AAOSA parser has achieved a complete parse for
the input string 4,4,...4,.

Proof of theorem 1. In equation (5) @ =5 =0 and £ =1 and symbol(C))
= §. Using equation (6) we conclude:

S="4,4,..4,

In step 2.4 of the above algorithm we are checking to find out if there

has been any new claims from propagating queries to a depth more than (7 +

1)length(1s) +1 .
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Theorem 2. In an AAOSA parser representing a context-sensitive
grammar G = (Vy, V;, P, S), no new claims can be made at a Depth of search
greater than (T + 1)/reh@ 1

In other words, in an AAOSA parser representing a context-sensitive
grammar G = (V,, V, P, S), all possible claims are made before the depth of
search becomes greater than (t + 1)/ 1,

Proof of theorem 2. Any context-sensitive grammar is recursive. This
means that there exists a procedure to derive the input string from the start
symbol that is guaranteed to halt. We assume that P does not contain § - € and
let I, € ¥,;". We define the set 7,, as the set of strings a € V", of length at most
length(l), such that S =" a by a derivation of at most m steps.

According to the definition of context-sensitive grammars, we have:

T,=T, ,via|dBeT, ANf=alla| < length(l)}

Also:

S="aAla| < length(l) = 3m|acT,
We have:
Vm=21,T,2T,_,

Therefore:

r7,=7, = 71,=7,..=T,,,=...

The AAOSA hyperstructure is actually calculating 7, 75, 73,...7, where
k is the depth of search and the symbol string for each new full sequence
consisting of at least one of the new claims made at a depth of search equal to
i (0 < i < k) belongs to 7. The number of strings in V" of length less than or
equal to length(l,) is:

T+ AT T < (T 1)eEh 1
These are the only strings that may be in 7. Thus
Im < (v+ 1)lrs®&+1 7 =T
This means that no new claims can be made from this point on. Thus,

our procedure is guaranteed to halt (i.e., it is an algorithm).
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4.3 The Complexity of the AAOSA Parser

According to the parsing algorithm above and condition (3), the
complexity of making claims is of O(n) where n is the length of the input.
Making claims takes place every time agent increments depth of search
therefore, assuming agents running in parallel, the system will have an average
complexity oft

O(n+2n+3n+...+kn)= 00k
where & is the depth of search. In the worst case, execution stops when &k =
(+1)"*!, where 1 is the number of elements of V. Therefore the complexity of
this algorithm is less than or equal to:

O(n(t + 1) * Yy = O(nt™)

We shall see that by using multiple processors for each agent we can
reduce this complexity to:

o)

4.3.1 Complexity of the Algorithm for Context-free Grammars

In AAOSA parsers representing context-free grammars, each agent
represents a non-terminal symbol. The end condition of our algorithm is true
when all agents receive all possible results from all their respective down-
chain agents. Let us consider two cases:

Case 1: Agent B is indirectly down-chain to agent 4 and agent 4 can
only make new claims once new claims from B have arrived. The time agent
A would be waiting for the response from B is at the worst case proportional
to the number of agents which in this case is equal to the number of non-
terminal symbols m.

Case 2: Agent A can make new claims based on the claims it has made.
Note that in this case too the Depth so far is incremented (Algorithm line
3.2.2.2). The number of consecutive times 4 spends in this loop in the worst
case is less than length(l,) or n.

From these two cases it follows that if m is the number of non-terminal

symbols in ¥ and # is the length of the input, the worst case depth of search
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would be O(m + n). By replacing in (7) we can conclude that the worst case
complexity of an AAOSA parser representing a context-free grammar is:
O(n(m + n)’) (&)

So far, we are assuming that only the agents are capable of running in
parallel. A parallel algorithm can be used for the agents themselves, as
illustrated in Fig. 8.

We use n — 1 processors in each agent, each to be responsible for one
of the n — 1 junctions between input elements (we call these 1./ processors). If
we use a maximum of (m — 1) processors, each processor representing a
junction of two non-terminal symbols in the interpretation policy (NJ
processor), we will need a maximum of (n — m) sets of these processors for
every possible combination of the input junctions (N.J sets). A top coordinator
processor is also needed for each NJ set. Each IJ processor stores all claims
that are adjacent at the junction it represents. NJ processors in each NJ set are
connected to their respective 1J processors and receive from them all claims
with the symbols adjacent at the junction that they represent. The coordinator
processors make new claims if all the processors in their respective NJ set
return successful claim matches.

We will need m(n — m) + n — 1 processors in each agent, therefore the
total number of processors needed would be m(m(n — m) +n—1). We would
also need m processors, one for each agent. The total number of processors will
therefore be:

O(m’(m(n — m) + n — 1)) = O(m*n)

Thus, the time complexity for each agent’s claim making will be
reduced to a constant. It follows that the worst case time complexity of the
fully parallel version of the AAOSA parser for context-free grammars is:

O((m + n)?)
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6. AAOSA and Natural Language User Interfaces

Most human-computer interfaces being used today are complicated and

difficult to use. This is due mostly to the growing number of features the

interface should provide easy access to.

5 Users usually have the following problems with current interface:

Prior to selecting an action. They have to consider if the
application provides an appropriate action at all. This hints on
a need for some sort of feedback from the application.

It is hard to access the actions they already know about. This
implies that the user should be able to freely express his or her
needs without being bound to the limited conventions preset by
the application.

They have to imagine what would be an appropriate action to
proceed with in order to perform a certain task of the
application domain. The application, therefore, should be able
to guide the users through the many options they may at any

stage of the interaction.

Thus, some of the desirable features in a user interface may be as

10
15
follows:

20 >

>
25

>
30

Natural expression: The user should be able to express his or

her intentions as freely and naturally as possible.

Optimum interaction: Interaction should be limited to the

following:

. The user is in doubt as to what she can do next or how
she can do it.

. The system is in doubt as to what the user intends to do
next.

Adaptability: Adaptability could be about the changing context

of interaction or application, but most importantly, the system

should be able to adapt to the user’s way of expressing her
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intentions. Two main issues that will have to be taken into

account in this regard are generalization and contradiction

recovery:
. Generalization: An adaptable system in its simplest form
5 will only learn the instance that it has been taught

(implicitly or explicitly). Generalization occurs when the
system uses what 1t has learned to resolve problems it
deems similar. The success and degree of generalization,
therefore, depend directly on the precision of the
10 similarity function and the threshold the system uses to
distinguish between similar and dissimilar situations.
. Contradiction: A system that generalizes may well over-
generalize. The moment the system’s reaction based on
a generalization is in a manner the user does not
15 anticipate, the system has run into a contradiction. The
resolution of this contradiction is an integral part of the
learning and adaptability process.

> Ease of change and upgrade: The application designer should

easily be able to upgrade or change the system with minimum
20 compromise to the adaptation the system has made to users.
This change should be done at run-time (i.e., on the fly).
6.1 Extending the AAOSA Parser
Although, as shown in section 4, a grammatical parser can be
implemented using AAOSA, practical problems force us to make some
25 improvements to it. Creating a grammar, be it context-sensitive, is a
complicated task. Changing grammars based on learning (section 5) is also
difficult. Grammars alone are not enough to fulfill the requirements noted

above.
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Furthermore, parsing alone is not sufficient either. A parser, after all,
tells us if the input string belong to a language or not. Our objective though,
is to find the best match for any given input. This means the AAOSA system:

. Should be able to accept non-grammatical input (e.g., “Tea for
Jila bring!”),

. Should be able to handle previously encountered input (e.g.,
“Yabadabadee some milk for me!”).

On the other hand, AAOSA should also be able to pinpoint the semantic
sub-domains responsible for responding to input. Therefore, we propose a
semantic approach to the problem of grammar definition. The designer of a
natural language interface application should design a semantic hyperstructure
of agents. The input agent at the top would be responsible for receiving input
and initiating the query and delegation phase, and the agents representing the
functionality of the system would be lowest order nodes of the hyperstructure.

The interpretation policies should be much fuzzier than that of the
parser. For instance, rather than requiring the claims on which a new claim is
based to be in sequence (step V in section 4), we can require them only to be
exclusive. Two claims C, and C, are exclusive (C, ® C,) if:

Vi, 0 < i <length(focus(C))), ~3 j, 0 < j <length(focus(C,)) |
s(focus(C\[i]) < s(focus(C,)[j]) < e(focus(C,[i]) V
s(focus(C\[1]) < e(focus(C,)[j]) < e(focus(C,[i])

It can be shown that:

CieC=0C,0C

The interpretation policies will determine what the best reduction
condition 1s and each agent will compute a confidence factor for its claims
based on the extent the reduced claims differ from the desired ones. Using a
threshold, claims of higher confidence are used as query responses. For
instance, take the grammatical rule 4 -~ BC as an interpretation policy. The
desired relative position of B and C, according to the definition of grammatical

production rules, is that B « C. But in our proposed system it would be enough
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for B and C to be exclusive. A number of heuristics may be used to
approximate the extent of difference from the desired status (e.g., differences
in order or proximity of the foci). Confidence in the claims themselves will
also have to be taken into account when basing a new claim on them.

Another main difference between the parser and our proposed natural
language system is that the context considered in the reductions of a context-
sensitive grammar is limited to the input. In the real world, though, the
decision to make a claim may be made based on context information that is not
necessarily present in the input. For instance, an AAOSA agent may decide to
make a claim based on the history of successful claims made, or the status of
the semantic domain it is representing, or even based on interactions with the
user.

6.2 The Robot Servant Example

We will explain our implementation on a toy problem: A robot is to run
certain errands around the house using a natural language interface. We will
start with a limited set of functions and show that this set is extendible:

. Serve tea, biscuits or sandwiches,

. Make telephone calls.

The idea is to distribute the natural language processing over nodes that
represent different levels of a hyperstructure covering the functionality space.
One example of such an hyperstructure is given in Fig. 9. A detail of part of
this hyperstructure is given in Fig. 10.

The natural language interpretation is done through a series of claims
and delegations carried out by the agents. Agents claim an input string as
belonging to them (internal interpretation), or decide that it belongs to some
other agent or agents based on their interpretation policies (transitive
interpretation). Agents that are not able to find appropriate policies that
interpret certain input will consult down-chain agents. In our example the
sandwich agent claims input such as “I want a sandwich” because of the

presence of “sandwich” (Fig. 10). In this case, the presence of the keyword
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“Sandwich” is theinterpretation policy. An example of transitive interpretation
would be in the case of the input, “I want to drink”; in which case the
processing is delegated to the tea agent by the food agent based on the presence
of the keyword “drink” which is a clue as to what kind of food the user is
referring to.

As mentioned before processing of input is done in two phases:
interpretation and delegation. For example, let us say the input agent takes
“Give me biscuits!”. This agent itself can not claim the input without
consulting other down-chain agents. These agents (Food and Telephone
agents), in turn are not capable of interpreting and therefore ask their
respective down-chain agents. The Biscuit agent claims this input based on the
presence of the keyword “biscuits” and answers the Food agent’s question
positively, causing the Food agent to send a similar affirmative response to the
Input agent.

So far, no processing has been done. It is now up to the initiator agent
(i.e., the Input agent) to decide whether this input should be actuated. Upon
actuation, agents use temporarily stored interpretation results to send the
actuation request down to the responsible agents and have them execute the
necessary processes without having to reinterpret the input. In our example,
“Give me biscuits!”, the Biscuit agent will be sent down the actuation
command and it will issue the necessary commands needed for the robot to get
some biscuits.

Ambiguities occur when the interpretation of input is not possible
because of there not being any agents to claim it, or more than one agent
claiming it. In the first case something unknown to the system has been
inputted and should be clarified and possibly learned by the agents. Take for
example the input: “I’m thirsty!”. Let’s say none of the agents claims this
input. In this case, the input agent can ask the user whether “I’m thirsty!” has
something to do with telephones or food (i.e., its immediate down-chain

agents). The result of this interaction may be learned by the Input agent (e.g.,
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Input agent learns that the input “I’'m thirsty!” should be delegated to the Food
agent). The Food agent, in turn not being able to interpret, will ask the user
whether “I’'m thirsty!” has anything to do with tea, biscuits, or sandwiches.
Eventually it is up to the Tea agent to learn that “I’m thirsty!” belongs to it. To
keep the responsibilities from drifting up-chain or down-chain in the
hyperstructure of agents, the Tea agent should at this point declare to it’s up-
chain agents (in this case the Food agent) to remove any interpretations of “I'm
thirsty!” that result in the delegation of the input to the tea agent (i.e., uses the
Un-learn performative). The Food agent, having received an Urn-learn
performative and processed it, should in turn propagate it further up-chain.

Another example of ambiguity is when the natural language input is
vague. For example, “I want to eat!” would cause the Biscuit agent and the
Sandwich agent both to claim it.

By adding agents to the system, we can extend its capabilities. An
example would be adding fax capability to the system in which Fax agent will
be added at the same level as the Telephone agent connecting to the same
down-chain agents as the telephone agent. Note that by doing so we have also
added ambiguity to the system. For instance, “Contact Jila” may result in both
the Fax and Telephone agents claiming it.

Some of the interesting attributes of our interface are as follows:

. It is modeless, in that the user does not have to follow preset
menus in order to achieve her intentions; (e.g., “Teal” is a valid
input).

. It supports context-based interaction (e.g., If you have just
ordered it to “Get some tea!” and follow that order up with
“Again!” it can resolve the ambiguity between the Telephone
and Food agents based on this context information, namely
recency of invocation.)

. It can be upgraded easily to be able to handle Multi-lingual

input because each agent’s interpretation policy is relatively
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simple and the grammar and semantics are mostly handled over
the architecture.

When mistakes are made by the system graceful error recovery
can be achieved by backtracking to the furthest down-chain
point of ambiguity resolved implicitly and interact with the user
to resolve it. For instance in the “Again!” example if the user
really means a re-dial should be attempted, she can express her
dissatisfaction by, say, pressing the escape key, and the system
will respond with: “Should I re-dial the phone or bring you tea
again?”

Handles incomplete, unpredictable, and grammatically incorrect
input. This is possible due to the simple interpretation policies
in each agent and the fact that agents can extend their
interpretation policies by learning.

Relatively small memory/processor requirements with respect
to similar interfaces based on classical Natural Language
Processing methods.

Home Theater System Example

In other embodiments, AAOSA can be used as a natural language

20

interface to electronic messenger systems, home theater systems, and for other

applications as well. Table 4 sets forth certain notable features in the home

theater system embodiment.

Table 4

25

[ System

[Channel jumps to 206 on DSS}

1. Flexibility -“Show me ESPN”
-“Put on freakin’ CNN”

[Channel jumps to 202 on DSS]

-“Mute the sound and change to
HBO and put ABC in the
window.”

[Sound is muted]
[Channel jumps to 910 on DSS]
{Picture in picture is put on and switched to channel 7]

I 2. Ambiguity

“play”
-“The VCR!”

-“Would you like to play, the VCR or the DVD?”
[VCR starts playing]

30

3. Context-based
ambiguity
resolution (DVD
and VCR can both
“stop”)

-“Stop 1t!” [VCR stops playing]
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4. Ambiguity based | -“What can I do with the lights?” -“Would you like to turn the lights on or off, or set them at a
Query handling specific level?”

-“Sports channel” -“Would you like to go to the next or previous channel or

5. Learming -“I'mean ESPN” jump to a specific one?”

{Channel jumps to 206 on DSS]
6. Complex -“Record the Sports channel 1n
operations half an hour” [Okay]
-“What! You can do that?” -“Would you like to use the TV, the VCR, the DVD, or the
s o0

7. Limited scope

Embodiments of AAOSA can been implemented in Java because of its
unique portability and multi-platform execution capabilities and multi-
10 threading features. They can use simple rote learning as the learning module

in the white-box, or other, more robust machine learning methods may be used.

7. Conclusions

The AAOSA software architecture can be used to effectively

15 implementation a natural language interactive interface. The architecture is
flexible, primarily because there is no rigid predetermination of valid input. It
is modular providing for easier revision, extension and development. AAOSA
agents can be re-used inside an application or in other software. The
independent nature of AAOSA agents provides for an inherently parallel

20 architecture. Agents can run and communicate over a network of

heterogeneous hosts. Run-time addition of new AAOSA agents is possible and
therefore incremental development and evaluation is possible. Following
guidelines set by the original designer; other designers can also contribute to
a system making it commercially attractive. The built-in learning and

25 ambiguity resolution features make AAOSA a more intelligent software
architecture.

As used herein, the term “message” includes, among other things,
queries, commands, and responses to queries. A message is considered herein
to be within the domain of responsibility of a given agent if: (a) the message,

30 or part of it, is within the given agent's local domain of responsibility (i.e., the
special processing unit of the agent has itself been assigned the responsibility

to take some action in response to the message, or in response to part of the
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message), and/or (b) the message, or part of it, is within the given agent's
downchain domain or responsibility (i.e., the agent knows of one or more
further agents to whom the message should be routed).

In some embodiments, the arrangement of agents might, for example,
satisfy the definition of a hyperstructure. In general, the arrangement of agents
can be described as a network. It will be appreciated that hyperstructures and
hierarchies are special cases of a network. Furthermore, a simple chain of
agents is a special case of a hierarchy and a single agent is a special case of a
chain of agents. All these forms and others are considered herein to be kinds
of networks.

As used herein, an agent which is part of a community of agents all
having the same domain of responsibility can be queried, in an appropriate
embodiment, by querying the community of which it is part. That is, the
querying of a group of agents is considered herein to include the querying of
one or more agents within the group.

As used herein, a given message, signal or event is "responsive" to a
predecessor message, signal or event if the predecessor signal or event
influenced the given signal or event. If there is an intervening processing
element or time period, the given message, event or signal can still be
"responsive" to the predecessor signal or event. If the intervening processing
element combines more than one message, signal or event, the output of the
processing element is considered "responsive” to each of the message, signal
or event inputs. If the given message, signal or event is the same as the
predecessor message, signal or event, this is merely a degenerate case in which
the given message, signal or event is still considered to be "responsive" to the
predecessor message, signal or event.

The foregoing description of preferred embodiments of the present
invention has been provided for the purposes of illustration and description.
It is not intended to be exhaustive or to limit the invention to the precise forms

disclosed. Obviously, many modifications and variations will be apparent to
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practitioners skilled in this art. In particular, and without limitation, any and
all variations described, suggested or incorporated by reference in the
Background section of this patent application are specifically incorporated by
reference into the description herein of embodiments of the invention. The
5 embodiments described herein were chosen and described in order to best
explain the principles of the invention and its practical application, thereby
enabling others skilled in the art to understand the invention for various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the

10 following claims and their equivalents.
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CLAIMS

1. A computer-implemented method for use with a subject
message, for use further with a network of agents each having a view of its
own domain of responsibility, comprising the steps of a first one of said
agents:

receiving from an upchain agent a query inquiring whether at least part
of said subject message is within the domain of responsibility of said first
agent;

querying at least one agent downchain of said first agent whether the
queried agent considers at least part of said subject message to be in the
queried agent’s domain of responsibility;

responding to said upchain agent tentatively whether at least part of said
subject message is within the domain of responsibility of said first agent,
before said first agent receives all responses from said agents downchain of

said first agent.

2. A method according to claim 1, further comprising the step of,
after said step of responding, said first agent responding further to said upchain
agent whether at least part of said subject message is within the domain of
responsibility of said first agent, after said first agent receives at least one

additional response from said agents downchain of said first agent.

3. A method according to claim 2, wherein said step of said first
agent responding further occurs in response to a second query received by said
first agent from said upchain agent inquiring whether at least part of said

subject message is within the domain of responsibility of said first agent.

4. A method according to claim 2, wherein said step of said first
agent responding further occurs in response to said first agent receiving said

at least one additional response.
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5. A computer-implemented method for processing a subject
message, by anetwork of agents including an originating agent and at least one
agent downchain of said originating agent, each agent in said network having
a view of its own domain of responsibility, comprising the steps of said
originating agent:

querying at least one of the agents downchain of said originating agent
in said network a first time, whether the queried agent considers at least part

of said subject message to be in the queried agent’s domain of responsibility,

O 0 N3 N L R W=

said first query including a first depth-of-search indication;
10 resolving any conflicting responses from said queried agents to identify
11 a prevailing one of said downchain agents to whom said subject message

12 should be passed; and

13 instructing said prevailing agent to handle at least part of said subject
14 message.
1 6. A method according to claim 5, further comprising the steps of
2 a first one of said queried agents, in response to said query:
3 determining whether a depth of said first agent exceeds said depth of
4 search indication, and if so, disclaiming said subject message.

7. A method according to claim 5, further comprising the steps of
a first one of said queried agents, in response to said query where a depth of
said first agent does not exceed said depth of search indication:

determining whether at least part of said subject message is within said

first agent’s local domain of responsibility, and if so, returning a response to

[« N R RV S

said originating agent claiming at least part of said message.
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8. A method according to claim 5, further comprising the steps of
a first one of said queried agents, in response to said query where a depth of
said first agent does not exceed said depth of search indication:

determining whether at least part of said subject message is within said
first agent’s local domain of responsibility;

and where said subject message is not within said first agent’s local
domain of responsibility but said first agent has further agents downchain of

said first agent, querying at least one of said further agents whether the further

O 0 N N kW

agent considers at least part of said subject message to be in the further agent’s

—_
(o)

domain of responsibility.

9. A method according to claim 5, further comprising the step of,
after said step of querying said agents downchain of said originating agent a
first time, querying said agents downchain of said originating agent a second

time whether the queried agent considers at least part of said subject message

wm bk WD

to be in the queried agent's domain of responsibility.

1 10. A method according to claim 9, wherein said second query

2 includes a second depth-of-search indication which exceeds said first depth-of-

3 search indication.

11. A computer-implemented method for processing a subject
message, by a network of agents including an originating agent and at least one
agent downchain of said originating agent, each agent in said network having
a view of its own domain of responsibility, comprising the steps of said
originating agent:

querying at least one of the agents downchain of said originating agent

in said network a first time, whether the queried agent considers at least part

0 N N R W N =

of said subject message to be in the queried agent’s domain of responsibility;

Attorney Docket No.: DEJI-01001US1 WSW
/wsw/deji/1001.app.wpd -50-



10
11
12
13
14
15
16

N N R W

0O 1 N L bR W N -

subsequently querying said queried agents a second time whether the
queried agent considers at least part of said subject message to be in the
queried agent's domain of responsibility;

resolving any conflicting responses from said queried agents to identify
aprevailing one of said downchain agents to whom at least part of said subject
message should be passed; and

instructing said prevailing agent to handle at least part of said subject

message.

12. A method according to claim 11, wherein said prevailing agent

is a community of agents.

13. A method according to claim 11, further comprising the steps of
a first one of said queried agents, in response to one of said queries:

determining whether at least part of said subject message is within said
first agent’s local domain of responsibility;

and where at least part of said subject message is within said first
agent’s local domain of responsibility, returning a response to said originating

agent claiming at least part of said subject message.

14. A method according to claim 11, further comprising the steps of
a first one of said queried agents, in response to one of said queries:

determining whether at least part of said subject message is within said
first agent’s local domain of responsibility;

and where said subject message is not within said first agent’s local
domain of responsibility and said first agent has no further downchain agents,
returning a response to said originating agent disclaiming said subject

message.
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15. A method according to claim 11, further comprising the steps of
a first one of said queried agents, in response to one of said queries:

determining whether at least part of said subject message is within said
first agent’s local domain of responsibility;

and where said subject message is not within said first agent’s local
domain of responsibility but said first agent has further agents downchain of
said first agent, querying at least one of said further agents whether the further

agent considers at least part of said subject message to be in the further agent’s

O 60 3 & »n A W N o~

domain of responsibility.

16. A method according to claim 11, wherein said step of querying
a first time comprises the step of providing to each of said queried agents a
first depth-of-search indication for said subject message,

and wherein said step of querying a second time comprises the step of
providing to each of said queried agents a second depth-of-search indication

for said subject message, said second depth-of-search indication indicating a

<N N L kW

deeper search than said first depth-of-search indication.

17. A method according to claim 11, further comprising the steps of
a first one of said queried agents:

determining in response to said first query whether at least part of said
subject message is within said first agent’s local domain of responsibility;

where at least part of said subject message is within said first agent’s
local domain of responsibility, returning a response to said originating agent
claiming at least part of said subject message; and

where said subject message is not within said first agent’s local domain

NTEN- TN B Y T I

of responsibility but said first agent has further agents downchain of said first

—
=)

agent, querying in response to said second query at least one of said further

p—
oY

agents whether the further agent considers at least part of said subject message

12 to be in the further agent’s domain of responsibility.
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18. A method according to claim 17, further comprising the steps of
said first queried agent:

receiving a group of at least one response from said further agents
downchain of said first agent, in response to said step of querying said further
agents; and

returning a response to said originating agent in response to said step

NN B W N

of receiving.
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ABSTRACT

Roughly described, the interpretation phase of a system using an
Adaptive Agent-Oriented Software Architecture allows queried agents to
respond to queries before they have all their own responses from their own
downchain agents. In one embodiment, queried agents respond at a fixed time
after receipt of a query, whether or not they have received all responses from
their own downchain agents. In another embodiment, a queried agent makes
claims to its upchain inquiring agent in response to each claim that the queried
agent receives from its own downchain agents. In another embodiment, a
queried agent can receive a particular query more than once, and in response
to each, the agent responds with whatever claims it then has. In order to limit
the duration of time during which queries are active in the network, and thus
during which new claims can still be made, the agent originating a query can

send a "forget-problem" or a "commit" message down into the network after

some period of time. Alternatively or additionally, the originating agent can
include a "depth-of-search”" indication with each query, thereby preventing
propagation of the query through more than the indicated number of agents. In

the latter alternative, the originating agent can subsequently make the same

query to the same downchain agents, but with an increased depth-of-search
indication, if for example the originating agent is not yet satisfied with the

claims it received in response to the first query.
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